AI/ML Security Framework

%%{init: {'theme': 'neutral', 'themeVariables': { 'primaryColor': '#2b5876', 'primaryTextColor': '#fff', 'primaryBorderColor': '#4e4376', 'lineColor': '#2b5876', 'secondaryColor': '#4CAF50', 'tertiaryColor': '#f8f9fa'}}}%% flowchart TB subgraph "AI/ML Security Framework" direction TB subgraph "Data Security Layer" D1["<i class="fas fa-database"></i><br>Data Collection<br>Security<br><small>NIST 800-53 SC-8</small>"] --> D2["<i class="fas fa-lock"></i><br>Data Storage<br>Encryption<br><small>FIPS 140-2</small>"] D2 --> D3["<i class="fas fa-user-shield"></i><br>Data Access<br>Controls<br><small>NIST 800-53 AC-3</small>"] D3 --> D4["<i class="fas fa-check-double"></i><br>Data Integrity<br>Verification<br><small>NIST 800-53 SI-7</small>"] end subgraph "Model Security Layer" M1["<i class="fas fa-code"></i><br>Model Development<br>Security<br><small>NIST AI 100-1</small>"] --> M2["<i class="fas fa-shield-alt"></i><br>Model Training<br>Protection<br><small>NIST SP 1270</small>"] M2 --> M3["<i class="fas fa-tasks"></i><br>Model Validation<br>Controls<br><small>NIST AI RMF</small>"] M3 --> M4["<i class="fas fa-rocket"></i><br>Model Deployment<br>Security<br><small>FedRAMP</small>"] end subgraph "Infrastructure Security Layer" I1["<i class="fas fa-server"></i><br>Compute Environment<br>Security<br><small>NIST 800-53 SC-7</small>"] --> I2["<i class="fas fa-network-wired"></i><br>Network Security<br>Controls<br><small>NIST 800-53 SC-7</small>"] I2 --> I3["<i class="fas fa-plug"></i><br>API Security<br><small>NIST 800-95</small>"] I3 --> I4["<i class="fas fa-box"></i><br>Container Security<br><small>NIST 800-190</small>"] end subgraph "Governance Layer" G1["<i class="fas fa-file-contract"></i><br>Security Policies<br><small>NIST 800-53 PL-1</small>"] --> G2["<i class="fas fa-clipboard-check"></i><br>Compliance<br>Monitoring<br><small>FISMA</small>"] G2 --> G3["<i class="fas fa-list-check"></i><br>Audit Logging<br><small>NIST 800-53 AU-2</small>"] G3 --> G4["<i class="fas fa-exclamation-triangle"></i><br>Incident Response<br><small>NIST 800-61</small>"] end D4 --> M1 M4 --> I1 I4 --> G1 subgraph "Threat Protection" T1["<i class="fas fa-user-secret"></i><br>Adversarial Attack<br>Detection<br><small>Example: Evasion Attacks</small>"] T2["<i class="fas fa-virus"></i><br>Model Poisoning<br>Prevention<br><small>Example: Backdoor Attacks</small>"] T3["<i class="fas fa-eye-slash"></i><br>Inference Attack<br>Protection<br><small>Example: Membership Inference</small>"] T4["<i class="fas fa-mask"></i><br>Privacy<br>Preservation<br><small>Example: Differential Privacy</small>"] end subgraph "Continuous Monitoring" C1["<i class="fas fa-chart-line"></i><br>Performance<br>Monitoring<br><small>KPI: Model Accuracy</small>"] --> C2["<i class="fas fa-shield-alt"></i><br>Security<br>Monitoring<br><small>KPI: Threat Detection Rate</small>"] C2 --> C3["<i class="fas fa-chart-bar"></i><br>Drift<br>Detection<br><small>KPI: Distribution Shift %</small>"] C3 --> C4["<i class="fas fa-search"></i><br>Anomaly<br>Detection<br><small>KPI: False Positive Rate</small>"] end %% Enhanced connections between layers D1 -.-.> T1 D2 -.-.> T4 M2 -.-.> T2 M3 -.-.> T3 %% Clearer connections between Threat Protection and Continuous Monitoring T1 --> C2 T2 --> C2 T3 --> C2 T4 --> C2 G4 --> C1 C4 --> D1 %% Additional connections showing the cyclical nature C1 -.-.> M4 C3 -.-.> M3 end classDef data fill:#4e4376,stroke:#2b5876,color:#fff,stroke-width:2px; classDef model fill:#2b5876,stroke:#4e4376,color:#fff,stroke-width:2px; classDef infra fill:#3a6073,stroke:#16222a,color:#fff,stroke-width:2px; classDef gov fill:#4CAF50,stroke:#8BC34A,color:#fff,stroke-width:2px; classDef threat fill:#ff5f57,stroke:#ff9f43,color:#fff,stroke-width:2px; classDef monitor fill:#16222a,stroke:#3a6073,color:#fff,stroke-width:2px; class D1,D2,D3,D4 data; class M1,M2,M3,M4 model; class I1,I2,I3,I4 infra; class G1,G2,G3,G4 gov; class T1,T2,T3,T4 threat; class C1,C2,C3,C4 monitor;

Legend

Data Security Layer
Model Security Layer
Infrastructure Security Layer
Governance Layer
Threat Protection
Continuous Monitoring

Our comprehensive AI/ML security framework ensures that artificial intelligence and machine learning implementations meet federal, state/local, and commercial security standards while delivering optimal performance. The framework addresses security at every layer of the AI/ML lifecycle, from data collection to model deployment, with continuous monitoring and threat protection across all sectors.

Multi-Sector AI/ML Security Standards

Federal Standards

  • NIST AI Risk Management Framework
  • NIST SP 800-53 Rev. 5
  • FIPS 140-2/3
  • FedRAMP

State & Local Standards

  • NASCIO Cybersecurity Framework
  • State-Specific AI Guidelines
  • Municipal Data Protection Standards
  • Smart City Security Requirements

Commercial Standards

  • ISO/IEC 27001:2022
  • SOC 2 Type II
  • PCI DSS for AI/ML Systems
  • Industry-Specific AI Frameworks

Cross-Sector Standards

  • GDPR AI Requirements
  • IEEE AI Ethics Guidelines
  • CIS Controls for AI/ML
  • Zero Trust for AI Systems

Security Effectiveness Metrics

Model Robustness Score

Measures resistance to adversarial examples (higher is better)

Target: >85%

Data Privacy Index

Quantifies the level of privacy preservation in training and inference

Target: >90%

Security Control Coverage

Percentage of applicable NIST controls implemented

Target: 100% of High Impact controls

Mean Time to Detect (MTTD)

Average time to detect security incidents

Target: <24 hours